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1 SGD

Non-convex and β-smooth objective functions:

SGD is a commonly accepted method for training deep neural networks, which are usually non-convex and
smooth optimization problems. For GD, we have known that

min
0≤t≤T−1

∥∇f(xt)∥ = O(
1√
T
).

What about SGD?

Theorem 1 (Fixed Learning Rate)

Suppose that A1 and A2 hold. Let st = s ∈ (0, 1/β], then

E[1/T
T−1∑
t=0

∥∇f(xt)∥2] ≤ sβσ2 +
2(f(x0)− f∗)

Ts
.

Proof 1 Based on the Lemma in Lecture 8,

Eit [f(x
t+1)− f(xt)] ≤ βs2t

2
σ2 − st(1−

βst
2

)∥∇f(xt)∥2,

≤ βs2

2
σ2 − s

2
∥∇f(xt)∥2.

Take the expectation over all indices, then

E[f(xt+1)− f(xt)] ≤ βs2

2
σ2 − s

2
E[∥∇f(xt)∥2].

Thus,

f∗ − f(x0) ≤ E[f(xT )− f(x0)] ≤ −s

2

T−1∑
t=0

E[∥∇f(xt)∥2] + Ts2β

2
σ2.

Then,

E[1/T
T−1∑
t=0

∥∇f(xt)∥2] ≤ sβσ2 +
2(f(x0)− f∗)

Ts
.

In addition, it has

E[ min
0≤t≤T−1

∥∇f(xt)∥2] ≤ sβσ2 +
2(f(x0)− f∗)

sT
.

Remark 1 Consider for SGD,

E[ min
0≤t≤T−1

∥∇f(xt)∥] = O(σ +

√
1

T
). (1)
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For GD, we has

min
0≤t≤T−1

∥∇f(xt)∥ = O(

√
1

T
). (2)

Theorem 2 (Non-fixed Learning Rate)

Suppose that A1 and A2 hold. Let st ∈ (0, 1/β] for all t, and
∑

t st = ∞,
∑

t s
2
t < ∞. Then,

E[
1∑T−1

t=0 st

T−1∑
t=0

st∥∇f(xt)∥2] → 0,

as T → ∞.

Proof 2 Similar to the previous theorem,

Eit [f(x
t+1)− f(xt)] ≤ βs2t

2
σ2 − st

2
∥∇f(xt)∥2.

Then, take the expectation over all indices, then

E[f(xt+1)− f(xt)] ≤ βs2t
2

σ2 − st
2
∥E[∇f(xt)∥2].

Thus,

E[f(xT )− f(x0)] ≤ βσ2

2

T−1∑
t=0

s2t −
1

2

T−1∑
t=0

stE[∥∇f(xt)∥2].

1

2

T−1∑
t=0

stE[∥∇f(xt)∥2] ≤ E[f(x0)− f(xT )] +
βσ2

2

T−1∑
t=0

s2t

≤ f(x0)− f(x∗) +
βσ2

2

T−1∑
t=0

s2t .

Therefor,

lim
T→∞

T−1∑
t=0

stE[∥∇f(xt)∥2] < ∞,

and

E[
1∑T−1

t=0 st

T−1∑
t=0

st∥∇f(xt)∥2] → 0.

Recall that, we have shown that GD for strong convex and smooth objective function has

∥xT − x∗∥2 = O(exp(−T )), and f(xT )− f(x∗) = O(exp(−T )).

What about SGD??

Theorem 3 (Fixed Learning Rate)

Assume that A1, A2 and A3 holds and st = s ∈ (0, 1/β] for all t, then

E[f(xT )− f∗] ≤ sβσ2

2α
+ exp(−αsT )(f(x0)− f(x∗)).
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Proof 3 Based on Lemmas in lecture 8

Eit [f(x
t+1)− f(xt)] ≤ βs2t

2
σ2 − st(1−

βst
2

)∥∇f(xt)∥2,

≤ βs2

2
σ2 − s

2
∥∇f(xt)∥2

≤ βs2

2
σ2 − αs(f(xt)− f∗).

Then,

Eit [f(x
t+1)− f∗] + f∗ − f(xt) ≤ βs2

2
σ2 − αs(f(xt)− f∗),

thus,

Eit [f(x
t+1)− f∗] ≤ βs2

2
σ2 + (1− αs)(f(xt)− f∗).

Moreover,

Eit [f(x
t+1)− f∗]− sβ

2α
σ2 ≤ βs2

2
σ2 − sβ

2α
σ2 + (1− αs)(f(xt)− f∗)

= (1− αs)(f(xt)− f∗ − sβ

2α
σ2).

Take all expectation for the indices, then

E[f(xt+1)− f∗]− sβ

2α
σ2 ≤ (1− αs)(E[f(xt)− f∗]− sβ

2α
σ2).

Thus,

E[f(xT )− f∗] ≤ sβ

2α
σ2 + (1− αs)T (f(x0)− f∗ − sβ

2α
σ2)

≤ sβσ2

2α
+ exp(−αsT )(f(x0)− f(x∗)).

Theorem 4 (SGD with diminishing learning rate)

Suppose that A1, A2 and A3 hold, and st satisfies
∑

t st = ∞ and
∑

t s
2
t < ∞. For example, we set

st =
ℓ

γ+t , ℓ > 1/α, γ > 0 and s0 = ℓ
γ ≤ 1/β. Then

E[f(xT )− f∗] ≤ ν

γ + T
, (3)

where ν = max{γ(f(x0)− f∗), ℓ2βσ2

2(ℓα−1)}.

Proof 4 Based on lemmas in lecture 8 and fact 1− βs2t
2 ≤ 1− βs20

2 = 1/2, then

Eit [f(x
t+1)− f(xt)] ≤ βs2t

2
σ2 − αst(f(x

t)− f∗).

Then,

Eit [f(x
t+1)− f∗] ≤ βs2t

2
σ2 + (1− αst)(f(x

t)− f∗).

Take all expectations, it has

E[f(xt+1)− f∗] ≤ βs2t
2

σ2 + (1− αst)E[(f(xt)− f∗)].
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Let us prove the final results by induction, for t = 0

E[f(x0)− f∗] =
γ

γ + 0
(f(x0)− f∗) ≤ ν

γ + 0
,

by the definition of ν.

Suppose that holds for t > 0, then

E[f(xt+1)− f∗] ≤ βs2t
2

σ2 + (1− αst)E[(f(xt)− f∗)]

≤ βs2t
2

σ2 + (1− αst)
ν

γ + t

=
βσ2ℓ2

2(γ + t)2
+ (1− αℓ

γ + t
)

ν

γ + t

=
(γ + t− 1)ν

(γ + t)2
− (αℓ− 1)ν

(γ + t)2
+

βσ2ℓ2

2(γ + t)2
.

Due to the facts
βσ2ℓ2

2
− (αℓ− 1)ν ≤ βσ2ℓ2

2
− βσ2ℓ2(αℓ− 1)

2(ℓα− 1)
= 0,

and
(γ + t)2 ≥ (γ + t+ 1)(γ + t− 1) = (γ + t)2 − 1,

then

E[f(xt+1)− f∗] ≤ (γ + t− 1)ν

(γ + t)2

≤ ν

γ + t+ 1
.

Remark 2 • From the result, we see that choosing a decreasing learning rate results in a sublinear
convergence rate, which is worse that is worse than the SGD with constant learning rate. However,
note that such a choice enables to reach any neighborhood of the optimal values.

• The similar result
E[f(xT )− f∗] ≤ O(∥x0 − x∗∥ exp(−αT

β
) +

σ2

α2T
)

can be found in [1].

• For only the convex function, SGD has the property

E[f(xT )− f∗] = O(1/
√
T ).

See Theorem 8.18 on Page 475 of Textbook.

1.0.1 Extensions

• Momentum Method:

xt+1 = xt + vt+1,

vt+1 = µtv
t − st∇fit(x

t).

This means
xt+1 = xt − st∇fit(x

t) + µt (x
t − xt−1)︸ ︷︷ ︸

momentum

.
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• Nesterov Accelerate Method:

yt+1 = xt + µt(x
t − xt−1),

xt+1 = yt+1 − st∇fit(y
t+1).

This means
xt+1 = xt − st∇fit(y

t+1) + µt (x
t − xt−1)︸ ︷︷ ︸

momentum

and µt =
t−1
t+2 .

• AdaGrad:

xt+1 = xt − st√
Gt + ϵ⊮n

⊗ gt,

Gt+1 = Gt + gt ⊗ gt,

where gt = ∇fit(x
t).

• RMSProp:

xt+1 = xt − st
Rt

⊗ gt,

M t+1 = ρM t + (1− ρ)gt ⊗ gt,

Rt+1 =
√
M t+1 + ϵ⊮n.

• Adam:

St+1 = ρ1S
t + (1− ρ1)g

t,

M t+1 = ρ2M
t + (1− ρ2)g

t ⊗ gt,

xt+1 = xt − st√
M̃ t + ϵ⊮n

⊗ S̃t,

where S̃t = St

1−ρ1
and M̃ t = Mt

1−ρ2
.
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