Optimization Theory and Algorithm II October 10, 2022

Lecture 9

Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 SGD

Non-convex and [-smooth objective functions:

SGD is a commonly accepted method for training deep neural networks, which are usually non-convex and
smooth optimization problems. For GD, we have known that
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What about SGD?

Theorem 1 (Fized Learning Rate)
Suppose that A1 and A2 hold. Let sy = s € (0,1/f], then
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Proof 1 Based on the Lemma in Lecture 8,
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Remark 1 Consider for SGD,
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For GD, we has
min [[Vf(x")[ = O(y/ 7).
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Theorem 2 (Non-fized Learning Rate)

Suppose that A1 and A2 hold. Let s, € (0,1/8] for all t, and Y, s; = 00, ., s7 < co. Then,
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Proof 2 Similar to the previous theorem,

2
Bst

By, () — () < B

S
0> = HIV )

Then, take the expectation over all indices, then
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Recall that, we have shown that GD for strong convex and smooth objective function has

T —x*|* = O(exp(=1)), and f(x") — f(x*) = O(exp(~T)).
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What about SGD??

Theorem 3 (Fized Learning Rate)
Assume that A1, A2 and A3 holds and sy = s € (0,1/f] for all t, then
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Proof 3 Based on Lemmas in lecture 8
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Theorem 4 (SGD with diminishing learning rate)

Suppose that A1, A2 and A3 hold, and s; satisfies >, sy = oo and Y., si < co. For example, we set

st = >1/a ¥>0 and so = £ 5 <1/B. Then
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where v = maX{'Y(f(XO) - » 2(fa—1)
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Proof 4 Based on lemmas in lecture 8 and fact 1 — 5% <1- & =1/2, then
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Take all expectations, it has



Let us prove the final results by induction, fort =0
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by the definition of v.
Suppose that holds for t > 0, then
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Remark 2 e From the result, we see that choosing a decreasing learning rate results in a sublinear

convergence rate, which is worse that is worse than the SGD with constant learning rate. However,
note that such a choice enables to reach any neighborhood of the optimal values.

o The similar result )
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can be found in [1].
e For only the convex function, SGD has the property
Ef(xT) - ] = O(1/VT).
See Theorem 8.18 on Page 475 of Textbook.

1.0.1 Extensions

¢ Momentum Method:
Xt+1 — Xt + Vt+17

VIt = vt — 5,V fi, (x5).

This means
X =xt — 5, Vi, (x) + pe (xF—x1).
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e Nesterov Accelerate Method:

This means
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and Ht = Fa-

o AdaGrad:

where g' = Vf;, (x').
e RMSProp:

e« Adam:
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